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ABSTRACT

Natural convection heat transfer from a flush mounted heater on a larger horizontal
substrate in water has been investigated for both steady and periodic input powers. For steady
power conditions, the heat flux was varied from 222 to 6880 W/m?. Heater surface temperatures
were measured at several locations in order to develop a non-dimensional heat transfer
correlation. Three types of periodic input powers were tested: a triangular wave, an approximate
square wave, and a sinusoidal wave. Mean, amplitude, and frequency were varied for each wave.
Temperature measurements at selected heater locations were compared with steady state

conditions to determine heat transfer enbancement.
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I. INTRODUCTION

A. ELECTRONIC COOLING

With the continuing increase in the volumetric heat
generation rates, heat removal from electronic components has
become an important concern. For the first generation digital
computers, forced air convection was employed to cool vacuum
tubes used for basic logic elements. With the invention of the
transistor in 1947, physical size of computers was reduced
while reliability and performance were increased. In 1960, the
monolithic circuit technology was introduced. With this
technology, now fully integrated on a silicon chip, 1large
sqale integration has increased from 1000 gates per chip in
the 1970s to upwards of 100,000 gates per chip in the 1980s.
This trend towards higher packaging densities and the increase
in power needed to accommodate the number of gates per chip
has in turn increased the rate of heat generation.(Ref. 1] It
is critical to maintain operating chip temperatures typically
below 85°C since the average failure rates increase
exponentially with junction temperatures.[Ref. 2]

As volumetric heat generation rates increase, forced air
cooling 1is quickly reaching its full potential in many
applications. Direct liquid cooling has emerged as one of the

most promising heat removal techniques for future generation




electronic systems. Inert dielectric fluids such as the
Fluorinert family are now commercially available for such
applications.[Ref. 3)

Direct 1liquid cooling encompasses both single phase,
natural, mixed and forced convection as well as phase change
schemes. Both forced convection and phase change schemes are
currently active areas of research. These methods can
potentially increase heat removal by several orders of
magnitude, over air cooling.([Ref. 1] While liquid immersion
natural convection provides enhancements only moderate
compared to boiling or forced convection, it has the
advantages of simplicity of design, low maintenance, no noise
and high reliability. [Ref. 4]

Recent studies on mixed and forced convective heat
transfer for electronic cooling are discussed by Incropera
(Ref. S5]. A number of studies on natural convection 1liquid
immersion cooling have also been carried out. Joshi et. al.
{Ref. 6] studied flow patterns and surface temperatﬁres for
liquid cooling of a 3 by 3 array of rrotruding heaters in an
enclosure. Kelleher et. al. [Ref. 7] studied flows and heat
transfer du2 to a long heated protrusion on a vertical
insulated wall in a rectangular chamber filled with water. Lee
et. al. [Ref. 8] using numerical computations supported
Kelleher’s findings for this case. Oosthuizen and Paul ([Ref.
9] numerically examined the transport for a square protrusion

mounted on the wall of an inclined square enclosure. Sathe and




Joshi (Ref. 4] computed the conjugate heat transfer from a
protruding heat source on a vertical plate within an
enclosure.

Joshi and Knight [Ref. 10] investigated a column of eight,
flush mounted heat sources on a vertical wall in water. Gaiser
(Ref. 11] investigated a three column array of 15 heaters per
column, flush mounted on a vertical wall in water, while
Haukenes ([Ref. 12] numerically modeled a single substrate
mounted flush heater. For flush heat sources on a vertical
surface Akdeniz [Ref. 13] ard Larsen [Ref. 14) investigated
surface temperature responses for step and periodic input

powvers.

B. NATURAL CONVECTION ABOVE A HORIZONTAL HEATED FLAT PLATE

Goldstein et. al. [Ref. 15] used mass transfer experiments
to correlate heat transfer from a heated isothermal upward-
facing plate or a cooled downward-facing plate. These
experiments were performed using a naphthalene sublimation
technique. A comparison of the experimental results to a
number of other studies was presented. The deviations were
attributed to differences in experimental procedures and
geometric.éonfigurations.

Lloyd and Moran [Ref. 16] also studied natural convection
mass transfer from a horizontal flat plate. An electrochemical
technique was used to measure mass transfer. Their correlation

for laminar mass transfer agreed with the measurements of




Goldstein et. al. [Ref. 151. A correlation for turbulent mass
transfer was also developed.

Husar and Sparrow [Ref. 17] preformed flow visualizations
for the above configurations. Their results showed that a
boundary layer develops normal to each edge of the plate. As
these boundary layers grow over the plate, the adjacent
boundary layers eventually collide. The line of collision
bisects the angle between the connecting edges. Ackroyd [Ref.
18] performed an analytical study using the boundary region
flow described by Husar and Sparrow. These results were
compared with available experimental data and reasonable

agreement was found.

C. OBJECTIVES

The present study éonsisted of twc parts. The “irst was to
evaluate the thermal characteristics of buoyancy induced flow
resulting from a discrete flush mounted heat source on a
larger horizontal substrate. While the transport
characteristics for a fully heated horizontal surface have
been investigated, very little information is available for a
heated surface surrounded by an un-heated area. The second
objective was to investigate the effects of a pulsatile input
power on the heat transfer characteristics.

Specific goals of this study were:

eTo design and build the test surface consisting of a

horizontal substrate and heater assembly.




eExperimentally determine surface temperature
distributions at various steady power settings and
develop a corresponding heat transfer correlation.

eTo determine the effects of pulsating input power on the

heat transfer characteristics.




II. EXPERIMENTAL APPARATUS AND PROCEDURES

A. EXPERIMENTAL APPARATUS

The experimental apparatus is sub-divided into four
separate assemblies; the test surface assembly, the power
supply assembly, the data acquisition/reduction unit, and the
deaeration/filtration assemblies, as seen in Figure 1. The
first three assemblies are interrelated through distinct
variables; the input power to the heater, the temperature
measurements on the test surface, and the ambient temperature
of the bath. The fourth system deals with the purification of
the water and the removal of entrained air.

The data acquisition system, -water tank, and water
filtration system are described in detail by Gaiser [Ref. 11].
Additions and modifications to the apparatus were discussed by
Haukenes [Ref. 12], Akdeniz [Ref. 13], and Larsen [Ref. 14].
The following is a summary of the above with particular
emphasis on the modifications which reflect the current status
of the apparatus.

1. Test Surface Assembly

The test surface assembly consisted of a horizontal
test surface with a flush mounted heater centrally imbedded
within a larger substrate. The substrate was constructed using

a 30.48 cm x 30.48 x 0.64 cm plexiglass board with an 11.0 cm




HP-85

Micro Computer

Data

Acquistion/
Reduction

Unit

Power Supply

Ptogramer

.9

Power Supp

] Water
y Filtration

9

Unit

(aput Power |

<

Heoater Tomp

Measurement

VA

Input|{ Power

<
<

Bath

Substrate

V

Test Surface

Temp

HP-9000
Micio Computet

Water
Tank
{Top View)

v

i)

(BM Clone

Figure 1. Experimental Apparatus

Deaeraﬁng.Tank




square milled out to a depth of 0.178 mm where the heater is
mounted. A top view of the surface showing the location of the
heater is shown in Figure 2. Within the square, a number of
holes were drilled and channels were milled out to accommodate
the power leads and therhocouple wires, Figure 3 shows the

size and locations of the holes and channels.

3048 ¢cm ‘{

1 rg,“ em Substrate

%Lvncm + 11.0 cm <{ 9.74 cm

o |

b :
Mounting
3048 cm | 11.0 cm ———— Square

T

——— POWER
| LEAD
GROOVES

9.74 cm] TEERRMOCOUPLE
- GROOVES

Pigure 2. Top View of the Substrate and Mounting Square

The heater is a gold/tin oxide film sputtered on a
nylon substrate manufactured by Courtaulds Performance Films
(Courtaulds’ FM~-1). The net thickness of the film and
substrate was 0.165 mm; It had a surface resistance of 2.6

ohms/square. The film was etched so that only a 10.0 cm x 9.0




o 21010 2.0 2.0 2.6 210
pﬂ T N R T
U 1 i 1

i

"4
o

T | T

ALL DIMENSIONS IN CM
0.5 CM DIAMEBTRR FOR ALL XOL38
¢.235 CM DEPTH YOR ALL MAJOR CHANMNILS
TOTAL AREA MILLED TO A DEPTH OF .019 CM

—e
e
AR AR

Pigure 3. Mounting Square

cm portion remained coated with the gold/tin oxide. The film
was then cut to an 11 cm square. The power leads were
connected to the film with the use of a silver loaded "ink"
which has a low electrical resistance, approximately 0.2
ohms/square. The "ink" overlapped the gold/tin oxide by 0.5 cm
on each side, making the heated area a 9.0 cm square as seen
in Figure 4. |

Before mounting the heater plate to the board, twenty
five 0.013 cm copper-constantan thermocouples were attached to
the substrate plate at precise locations. Figuré 5 identifies

each thermocouple and its location on the plate. The
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Figure 4. Bottom View of Test Heater

thermocouples were placed through the drilled holes, set in
the channels, and attached to the plate with Omega Bond 101,
a high thermal conductivity - adhesive. Attaching the
thermocouples inm this manner electrically isolates them from
the heater while still allowing for accurate temperature
measurements. .

In order to construct a flush test.surface, great care
had to be used in mounting the test heater. A thin film of
Omega Bond 101 was spread over the milled square on the
substrate plate. The power leads were then placed through the

drilled holes and the test heater was 1lowered into the
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Figure S. Location of the Thermocouples on the Test Heater

substrate. A roller was used to smooth out the surface and
displace any air bubbles which might have been trapped between
the heater and the substrate. This was allowed to cure for 12
hours with a flat weight holding it in place. A 0.013 cm sheet

of thermochromic liquid crystal (TLC) was attached over the

entire test surface for the visualization of the temperature

patterns. The crystals in this sheet displayed shades of
yellow, green, and blue in reaction to temperature changes in
the approximate range of 28° to 34° C. The crystals were
calibrated in place against the 25 thermocouples in air.

Calibration data were taken at the color start temperatures.

11




Based on these, yellow appears at approximately 28°C, green at
30°C, blue-green at 32°C, and dark blue at temperatures above
34°C.

2. Power S8Supply Assembly

.
HP-6981B -~
Powe: Supply _
Rihunt v
shunt
/]\ /\ «0.101
Ohm
" HP-53%501 R
Programer heate:
HP-85 Comp \,hnatox

Pigure 6. Power Supply Assembly

This was the portion of the experimental apparatus
which provided .power to the heater. The power supply 'assembly
consisted of a Hewlett Packard(HP)-85 computer used in
conjunction with an HP-59501 power supply programmer and a 0-
20 Volt, 0-10 Amp HP-6286A D.C. power supply to control the

input power to the heater. The power assembly was connected in

12




series with a 0.101 Ohm precision shunt, and the heater as
shown in Figure 6.
3. Data Acquisition/Reduction Assembly

The data acquisition/reduction assembly was fully
explained in Larsen (Ref. 14], the following is a brief
summary of his description. The assembly consisted of a HP
3852A Data Acquisition unit, a HP 9153 Computer system, and an
IBM clone personal computer. The computer controlled the data
acquisition system, instructing it to monitor desired
thermocouples and measure the voltage drops across the heater.
With the voltage reading across the precision shunt (V,.) and
the heater (V,..) known, along with the resistance of the
shunt (R,,), the input power to the heater was easily computed
by the following equation:

v,
Power=(—S0E) V, . or
shunt

After processing the data, it was transferred to the
IBM clone where it was 'imported into a spread sheet program
for graphics. '

4. Deaerating/Filtration Assembly

The deaerating unit consisted of a vacuum pump, a
discharge pump, a heating element, and the deaerating tank.
While in operation, a pressure of between 68 and 85 KPa was
maintained inside the tank creating a vacuum. The heating

element raised the water temperature 10 - 15 K above the bulk

13




temperature in the tank. Water is pulled

into the deaerating

tank by vacuum drag and discharged through the discharge pump.

[Ref. 14)

The filtration system consisted

of four cartridge

filters used to maintain the resistivity of the tank water

above 0.7 megaohm-cm. Figure 7 shows the

combination of both
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/\ Hejter D

Leve!
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Y
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Pump .

O

<
Pump ~

Pigure 7. Deaerating/Filtration Assembly

the deaerating and filtration systems.
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B. EXPERIMENTAL PROCEDURE

The experimental program consisted of two parts, the first
involving steady input powers and the second pulsatile input
powers. For both parts, the bath was prepared in the same
manner. A mechanical stirrer was run for five to ten minutes
to dissipate temperature stratification within the test tank.
The tank was then allowed to reach quiescence, which took
approximately 30 minutes. The computers and data acquisition
system were then turned on and allowed to warm up.

To initiate a typical run, a program used to generate a
steady heater power input was loaded and run. For the first
part, the heater was allowed to reach steady state, which took
approximately 15 minutes. The data aéquisition program was
then run and temperatures at the 25 locations were measured
over a nine minute period. This was done for eleven different
power 1levels. Runs at four different power 1levels were
performed twice, in order to confirm repeatability of data.
The resulting temperatures were within 1.3%.

For the second part of the study, the steady power program
was again run for about ten minutes to warm up the heater.
Following this, a program used to generate the appropriate
periodic power input pattern was loaded and run. The heater
was then allowed to reach a periodic steady state. The data
acquisition program was then run and periodic temperature

measurements were taken over a six minute period.

15




Three different types of periodic input power patterns
were examined: a triangular wave, an approximate square wave,
and a sinusoidal wave. For each run measurements at five
different thermocouple locations, #13, #14, #15, #19, and #25
in Figure 5, were obtained. The locations were selected as
representative ones for the entire test surface. These
measurements were obtained for three mean input power levels,
each with three frequencies. Two mean input powers had four
amplitude variations and one had two amplitude variations.

During both parts of the investigation, temperature
patterns were visualized at the 19.8 watt power level using

the thermochromic liquid crystal (TLC) sheet.

16




III STEADY STATE RESULTS AND DISCUSSION

A. DATA ANALYSIS

A simple energy balance around the heater neglecting

conducticn losses, yields the convective rate of heat loss:

Qconv=Cheat
Where Q,., is the power supplied to the heater in watts.
With Q,, defined, the non-dimensional heat transfer
coefficient based on the heat flux, Nusselt number (Nu) and
the Rayleigh number (Ra), can be calculated. The Nusselt

number was defined as:

Qconvl
NU= con [~
~ M(TpllC.-Tw)

T 1S the average of all twenty five thermocouples over the
nine minute scan period. L, is the characteristic length equal
to the ratio of the surface area to the perimeter of the

heater. The Rayleigh number is given by:

gBoL:

Ra=
kAv?

Pr

17




All fluid properties used in the data reduction were
determined at a film temperature assumed as the average of the
plate temperature (T,,) and the ambient fluid temperature
(Tos) -

The Nusselt number results from the present investigation

are plotted in Fig. 8 as a function of the Rayleigh number.

10

NU (AVERAGE)

I

1 - -+
1.0E+06 1.06407 1.0E+08
RA (FLUX BASED)

Figure 8. Average Nusselt Number Versus The Feat Flux Based
Rayleigh Number

The resultant correlation of the data is assumed to follow the

general relation:

18




Nu=a(Ra) ?
The values of a and n are determined from a linear best fit

for the data plotted in Fig. 8. The resulting correlation is:

Nu=2.22 (Ra) -9¢5

This equation is valid for 1.2x10° <Ra< 9.1x10" .

In an attempt to correlate the present results wi*h

previously developed correlations found by Lloyd and Mor
(Ref. 16] a temperature based Rayleigh number was defi.iea.
Assuming T,, to be the constant pla‘': u_:mperature, the

Rayleigh number was calculated using:

N gpLg ( Tplato- Tnnb)
Rar,,.,. = v2 Pr

The results found in Lloyd and Moran differed from those found
in this investigation. Figure 9 shows a graphical comparison
of the two results. Variations in the geometry of the test
surfaces could account for the large differences in the
results. Lloyd and Moran tested a fully heated surface, while
the surface used in the present investigation had an unheated

area surrounding it.

19
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Figure 9. Comparison of Steady Data With Constant Temperatures

B. SURFACE TEMPERATURE PATTERNS AND THERMOCOUPLE MEASUREMENTS

Before the discussion of the present results, the flow
patterns found by Husar and Sparrow [Ref. 17] must be
mentioned. The basic characteristic found was the partitidning
of the natural convection flow field for surfaces with
corners. Boundary layers were initiated perpendicular to the
edges of the platé. The adjoining boundary layers intersect
forming a partition. For a square, the partitioned areas are
shaped as isosceles right .triangles. The partition nearly

coincides with the bisectors of the angles of the plate. No

20




flow crosses a partition line, but rather each partition line
is a central element of a vertical ascending buoyant plume.
These lines are not fixed, but show some waviness as a result
of the meandering nature of the rising plume.

Surface temperature patterns in the present study were
visualized using a liquid crystal sheet. Shades of yellow,

green, and blue were observed over approximately a 6°C

Pigure 10. Heated Portion of the Plate

bandwidth above 28°C. Figure 10 shows a picture of the liquid

crystal display at a heat flux of 2440 W/m? and a flux based

21




Rayleigh number of 2.1 x 10’ . The crystals displayed a dark
blue area, about 1 cm in width, just inside the edge of the
heated portion of the plate. This area remained rather
constant showing no changes in color during the testing.
Partitioning was also observed by blue lines nearly coinciding
with the bisectors of the corners. Blue lines were also seen
at diéérete locations within the partitioned areas. These
lines are also part of the ascending buoyant plume, appearing
to entrain the heated surrounding fluid up into the plunme.
This leaves a cooler area adjaceht to the 1lines thus
accounting for the green, yellow and black colors seen in the
center of the plate. Bo;h the partition lines and the 1ines
within the partitioned area meandered around slightly but
still maintained the general form of the isosceles right
triangle. The visual results of Husar and Sparrow [Ref. 17] at
the same Rayleigh number were very similar.

Temperature measurements over the plate support the visual
results. The temperatures obtained around the edge of the
plate were on an average higher and more steady than that at
the center. The temperature within the center sgowed

fluctuations over time. This is due to the partition lines and

22
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Figure 11. Temperatures of a Cross Section of the Plate

the lines within the partitioned areas meandering over the
temperature sensor. Figure 11 shows a plot of the temperatures
at an input power of 19.8 W for a cross section of the plate.

The thermocouple locations are #3, #8, #13, #18, and #23.V

23




IV PULSATILE POWER RESULTS AND DISCUSSION

A. DESCRIPTION OF DATA PRESENTATION

This portion of the investigation studied the effects of
different pulsatile input powers on heat transfer. Three power
patterns in the forms of a triangular wave; a sinusoidal wave,
and a square wave were examined. Two amplitudes for the mean
pover level of 3.2 W and four amplitude variations for the
mean levels of '19.8 W and 59.6 W were studied. Within this

Table I. Combinations of mean input power and amplitude to
mean powver ratios.

MEAN |AMPLITUDE TO MEAN RATIO
(Watts) (R)
3.20 1.25 2.00 -
19.80 0.202 0.404 0.707 1.010
59.6 0.081 0.161 0.282 0.402

chapter a combination of the mean power and the amplitude to
mean power ratio will be used for identification of each run.
Table I 1lists these combinations. For each of the ten
combinations three different frequencies were used, 0.025 Hz,

0.050 Hz, and 0.10 Hz.

24




Temperature measurements were taken at five discrete
locations over the plate. Due to the partitioning of the plate
discussed previously, the locations chosen were #13, #14, #15,
#19, and #25 in Figure 5. Thermocouples #19 and #25 are on the
bisecting angle of the corner, while #14 and #15 are within
the partitioned area. Thermocouple #13 is at the center of the
test heater. These locations will be subsequently referred to
by their numbers.

Heat transfer enhancement will be referred to by an
enhancement parameter (E). This is defined as the ratio of the
mean temperature level at a location due to steady power input
to the mean temperature level at the same location due to
pulsatile power input. Values of E>1 indicate beneficial
effects of pulsation while E<1 implies no benefit due to the
pulsation. Appendix A contains a comple;e listing of all runs
performed and resulting values of E. Appendix B is an example
of the graphical data that were obtained. The combination
presented is for a mean power of 19.8 W and a mean to

amplitude ratio of 0.707.
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B. RESULTS FOR A MEAN POWER OF 3.2 WATTS

Two amplitudes were used for this mean power level, 4.0
W amplitude, corresponding to R=1.25, and a 6.2 W amplitude or
R=2.0.

For both amplitudes with the triangular wave pattern, the
greatest enhancement was for 0.10 Hz, while the 0.050 Hz had
the least. The smaller amplitude also had a larger effect on
the enhancement. The sinusoidal wave showed similar
enhancement characteristics but not to the same degree. The
enhancement for both the 0.10 Hz and the 0.025 Hz patterns was
the same. The 0.050 Hz pattern still had the least enhancement
but it was better than for the corresponding triangular wave.
An example of this is shown in Figures 12 and 13. The
amplitude change had little effect on the sine wave. The
square wave did not follow this trend. Rather, little to no
enhancement was seen in the smaller amélitudé, while
enhancement in the range of E= 1.069 to 1.231 was noticed in
the larger amplitude. The 0.10 Hz again had the greatest

enhancement and the 0.025 Hz had the least.
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R=1.25. Bold=Delta temp response, Fine=Power input.

27




DELTA TEMP (C) DELTA TEMP (C)

DELTA TEMP (C)

TC #13, 0.025 HZ

N "
W\/\/\?\ /\ /\ 7§ AWAY
A AR AN AAYARVARVARVARV AN
VAAVAAVEAVAAVAAVIAVAAVARVARV
1T &d00 12000 8300 24000 300,00 &
TIME (SECONDS)
‘ TC #13, 0.050 HZ ‘
“%%%%%%%%%%%%%%%%%%3
VVVVUUVUUVV U VTV
’ - ‘R:IME (:;CONDS )?‘ﬁm = "
TC #13, 0.10HZ
A A
ATTTVTTTV VTV TTVT VTV VYUV

TIME (SECONDS)

POWER (WATTS) POWER (WATTS)

POWER (WATTS)

Figure 13. Delta temperature response for steady and cyclic
input with sinusoidal wave pattern at #13 for 3.2 W. and
R=1.25. Bold=Delta temp response, Fine=Power input.

28 -




1. Amplitude to Mean Power Ratio of 1.25

For the triangular wave, the heat transfer enhancement
characteristics at all five locations followed the trend just
discussed. All three frequencies had enhancement. The values
of E ranged from 1.291 at thermocouple #19 for 0.10 Hz to
1.036 at thermocouple #14 for 0.050 Hz.

With some minor variations, the sinusoidal wave showed
similar characteristics. Enhancement was found at location #s
13, 15, 19, and 25 for all frequencies. The enhancement
parameters for these four locations were the same for both
0.10 Hz and 0.025 Hz. The 0.050 Hz again showed the least
enhancement. Location #14 only had enhancement for 0;025 Hz.
E<1 was seen at the other two frequencies. The range of E was
from 1.148 at #19 for 0.025 Hz and 0.10 Hz to 0.967 at #14 for
0.10 Hz.

Location #s 14 and 19 , with the square wave, had E<1
for all three frequencies. Locations showing enhancement were
#s 13, 15, and 25 at 0.025 Hz and at #13 for 0.10 Hz. E ranged

from 1.067 at #13 for 0.10 Hz to 0.912 at #19 for 0.10 Hz.
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2. Amplitude to Mean Power Ratio of 2.0

For the triangular wave all five locations, again, had
enhancement for all three frequencies except for location #s
13, 14, and 25 at 0.050 Hz. There was no enhancement (E=1) at
location #s 13 and 25, while #14 had E<1l. The values of E
ranged from 1.142 at #13 for 0.10 Hz to 0.967 at #14 for 0.050
Hz.

The sinusoidal wave, had E>1 at all five locations for
all frequencies. At location #s 13, 15, 19, and 25 the
enhancement parameters were independent of the frequencies.
The enhancement parameter at #14 was the same for 0.050 Hz and
0.025 Hz, while for 0.10 Hz it increased slightly. The
parameter E ranged from 1.148 at #19 to 1.036 at #14.

The square wave data showed enhancement at all five
locations for 0.050 Hz and 0.10 Hz. For the 0.025 Hz
frequency, enhancement was seen at #s 13 and 15, while E<1 was
seen at #s 14 and 19. E ranged from 1.231 at #13 for 0.10 Hz

to 0.935 at #14 for 0.025 Hz.
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C. MEAN POWER OF 19.8 WATTS

Four amplitudes were used for this mean power level. These
included 4.0 W (R=0.202), 8.0 W (R=0.404), 14.0 W (R=0.707),
and 20.0 W (R=1.01).

Enhancement for this mean input appeared to be dependent
on a combination of both amplitude and frequency for the
triangular and sinusoidal waves. As the amplitude increased,
enhancement was noticed as the frequencies increased. The
upper end of this trend seemed to be near the 14.0 W
amplitude, because the 20.0 W amplitude response was similar
to that at the lowest amplitude. These conditions are seen in
the sine wave’s graphical data for location #13, Figures 14-
17. The square wave response was again quite different.
Certain conditions exhibited enhancement, but no particular

pattern was noticed.

1. Amplitude to Mean Power Ratio of 0.202
For the triangular wave, only location #s 15 and 25
for 0.025 Hz had enhancement. Location #s 13 and 19 had no
enhancement (E=1) for the same frequency. All other locations
and frequencies resulted in E<1. The enhancement parameter E

ranged from 1.007 at location #s 15 and 25 to 0.958 at #s 14
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and 19 for 0.050 Hz.

The sinusoidal wave resulted in a slightly higher E
value at some locations. At all locations for 0.025 Hz and
0.050 Hz E ranged from 1.0 at #19 for 0.025 Hz to 1.038 at #19
for 0.050 Hz. For the 0.10 Hz frequency all five locations had
an E<1 with the lowest parameter being 0.965 at #14.

With the square wave, all five iocations had E<1 for
the two lowest frequencies. Only location #s 13, 14, 15, and
25 had E>1 for 0.10 Hz. The largest value of E was 1.022 at

#14.

2. Amplitude to Mean Ratio of 0.404

With the triangular wave, all five locations showed
enhancement for the frequencies of 0.050 Hz and 0.10 Hz.
Locatioﬁ #25 also showed an enhancement for 0.025 Hz. No
enhancement (E=1) was seen at #s 13 and 15, while #s 14 and 19
had E<1 for a 0.025 Hz frequency. This is a higher wvalue of E
compared to the response for R=0.202. E ranged from 1.022 at
location #14 for 0.10 Hz to 0.986 at #14 for 0.025 Hz.

The sinusoidal wave, like the triangular wave, had E>1
at all five locations for the 0.050 Hz and 0.10 Hz

frequencies. For 0.025 Hz E=1 at #s 15 and 25, while E<1 was
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found for location #s 13, 14, and 19. E ranged from 1.043 at
#25 for 0.10 Hz to 0.967 at #13 for 0.025 Hz.

The square wave had E<1 for all locations and al;
frequencies except at #25 for 0.025 Hz. E at this point was

1.007.

3. Amplitude to Mean Power Ratio of 0.707

The triangular wave had enhancement at all five
locations for 0.10 Hz and at #15 for 0.050 Hz. For 0.025 Hz
and at all other locations at 0.050 Hz, E was below 1. E
ranged from 1.036 at #13 for 0.10 Hz to 0.965 at #14 for both
0.025 Hz and 0.050 Hz.

The sine wave, 1like the triangular wave, had
enhancement at all locations for 0.10 Hz and at location #25
for 0.050 Hz. All other locations had E<1l. The E values ranged
from 1.036 at #13 for 0.10 Hz to 0.965 at #14 for 0.925 ﬁzf

The frequencies of 0.025 Hz and 0.10 Hz with the
square wavé had enhancement at all locations. The 0.10 Hz
frequency showed the greatest degree of enhancement, similar
to the results found for the triangular and sinusoidal waves
with a mean input of 3.2 W. Figure 18 is an example of this

result at location #15. The 0.050 Hz had the smallest E
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values, with E=1 at #25 and E<1 at #s 15 and 19. The parameter
E ranged from 1.036 at #13 for 0.10 Hz to 0.986 at #15 for

0.025 Hz.

4. 2Amplitude to Mean Power Ratio of 1.01

The triangular wave showed enhancement at all
locations for 0.025 Hz. The only other locations resulting in
E>1 were location #s 13 and 25 for 0.050 Hz. No enhancement
was seen at location #s 15 and 19 for 0.050 Hz. All other
locations and frequencies had E<1. The range of E was from
1.036 at #13 for 0.050 Hz to 0.966 at #15 for 0.10 Hz.

For 0.025 Hz and 0.050 Hz, the sinusoidal wave
resulted in enhancement at all locations except at #15. The
frequency of 0.10 Hz had E<1l for the five locations. The
largest value of E was 1.015 at #14 for 0.025 Hz and 0.050 Hz.

The square wave showed enhancemeﬁt at all locations
for 0.025 Hz as well as at #13 for 0.050 Hz and at #s 13 and
14 fqr 0.10 Hz. E<1 was seen at all other locations and
frequencies. E ranged from 1.039 at #14 for 0.025 Hz to 0.979

at #15 for 0.050 Hz.
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D. MEAN POWER OF 59.6 WATTS

Four amplitudes were used for this mean power level. These
included 4.0 W (R=0.081), 8.0 W (R=0.161), 14.0 W (R=0.282),
and 20.0 W (R=0.402).

Temperature response at this mean power level was more
dependent on R rather than on the wave form or frequency of
power pulsation. For this section comments on the results will
be on responses at the spatial locations rather than on the
wave forms. At location #s 13 and 25 for all four amplitude
variations nearly all waves and frequencies resulted in E<1.
Location #14, for the two smaller amplitudes, had E<1 for
nearly all waves and.frequencies. The two larger amplitudes,
at this location, resulted in E>1 for nearly all waves and
frequencies. Location #15 showed enhancement at the smaller
amplitudes and degradation in hea; transfer for the larger
ones. Location #19 was tﬂe only 1location to display
enhancement ov;r the entire range of amplitudes. The only
variation to the location dependency was the sinusoidal wave
for the two smaller amplitudes. This resulted in E<1 at most
locations for all frequencies. The enhancément data in

Appendix A presents these results best.
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1. Amplitude to Mean Power Ratio of 0.081

At location #s 13 and 14, the wave and frequency
combinations resulted in E<1, except for the 0.025 Hz
triangular wave at #13. Location #15 showed enhancement except
for the sinusoidal wave at all three frequencies. Location
#19, like #15, had enhancement with the exception of the 0.025
Hz and 0.050 Hz sine patterns. At location #25, for triangular
wave E increased from below 1 for 0.025 Hz to above 1 for 0.10
Hz. The sine wave again showed no enhancement for the three
frequencies. The square wave only showed noticeable

enhancement at 0.10 Hz.

2. Amplitude to Mean Power Ratio of 0.161

With the exception of the 0.10 Hz triangular wave, all
wave form and frequendy combinations resulted in E<1 for
location #s 13 and 14. For location #15, except for the 0.025
Hz and 0.050 Hz sine wave, all £he combinations had
enhancement. At #19 the square wave resulted in enhancement
with increase in frequency. The sinusoidal and triangular
waves produced mostly deterioration in heat transfer. Except
for the 0.025 Hz square wave pattern, E was below 1 at

location #25.
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3. Amplitude to Mean Power Ratios of 0.282 and 0.402
Heat transfer deterioration was seen at location #s
13, 15, and 25 for most wave and frequency combinations. The
only exceptions were the 0.025 Hz square wave patterns of both
amplitudes at #15 and the 0.10 Hz sine wave of R=0.402 at #13.
Location #s 14 and 19 showed enhancement for most wave and
frequency combinations, except the 0.025 Hz square wave with

R=0.282.
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V. CONCLUSIONS

Several important conclusions were drawn about the
transfer of heat from a flush horizontal heat source. The
addition of an unheated area surrounding a heater reduced the
heat transfer coefficient compared to a fully heated surface
with a steady input power. This was expected due to the
development of the momentum boundary layer prior to the
thermal 1layer development. Visualization of the surface
temperature pattern indicate a similar partitioning effect
within the fluid flow adjacent to the heated area as seen for
a fully heated plate.

Introducing a pulsatile input power provided several
interesting findings. The lowest mean power level produced the
greatest enhancement parameters for all waves. The range of
enhancement parameters for the medium and high mean inputs
were similar to each other and noticeably lower than for the
low mean input. Of the three wave forms, the triangular wave
pattern displayed the largest degree of enhancement with a low
mean input, low amplitude, and high frequency: For a vertical

flush heater Larsen [Ref. 14] found the greatest enhancement
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for the same pattern, frequency, and ratio, but for a higher
mean input.

The triangular and sinusoidal wave inputs had similar
enhancement patterns for the medium mean power input. At the
intermediate R (0.404 and 0.707) enhancement was at the higher
frequencies. At the highest R (1.010) enhancement was for the
lower frequency. The square wave exhibited enhancement for
certain conditions, but no predominant trend was noticed for
either the low or medium mean power levels.

The enhancement at the high power level was dependent on
location and amplitude ratio vice wave form. At low R (0.081
and 0.161), the center edge and regions along the partition
line had enhancement. At the higher R (0.282 and 0.402)
enhancement was around the center but some distance apart.
With the ultimate objective of providing heat transfer
enhancement characteristics for electronic components, the
lower mean power level with a triangular wave pattern and a

higher pulsation frequency holds the most promise.
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VI. RECOMMENDATIONS

In continuation of this study it is recommended that the
following aspects be furtner studied:

Investigate the fluid flow adjacent to the surface and
within the buoyant plumg for steady and cyclic power inputs.
. The effects due to possible turbulent effects caused by
increased amplitudes and mean power inputs.

Numerically study the heat transfer characte:istics
corresponding to both steady and pulsatile iﬂputs.

Investigate the heat transfer adjacent to an inclined
flush plate at various angles.

The buoyant plume appears to initiate its ascent at the
partition lines and the lines within the partitioned area. The
meandering of theseilines adjacent to the plate could possibly
be controlled. The ascent may by mechanically initiated with
raised lines along the bisectors and at discrete iocations

within the partitioned area. If the meandering is

controliable, hot spots on the surface could be controlled. An -

investigation of this type should be done to determine the

controllability of these lines.
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APPENDIX A

LIST OF DATA RUNS AND ENHANCEMENT PARAMETERS
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APPENDIX B
SAMPLE OF RESULTS IN GRAPHICAL FORM
Graphical data presented here is a sample of a complete
set of runs for a mean power and R combination. A combination
like this consists of data at all five locations for each wave
pattern with each frequency. The combination here is a mean
power of 19.8 W and a R of 0.707. The bold lines are the
tempeature rise over ambiant levels for the power inputs

indicated by the fine lines.
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Figure 19. Delta temperature response for steady and cyclic
input power with a triangular wave pattern at #13.
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Figure 22. Delta temperature response for steady and cyclic
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Figure 30. Delta temperature response for steady and cyclic
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APPENDIX C
UNCERTAINTY ANALYSIS

The uncertainty in the calculated values in this
investigation was determined. One half of the least count was
taken to be the uncertainty in each measured quantity. The
uncertainty in the power input was + 0.001 W, in the
temperature + 0.05°C, and in the length used to determine
heater dimensions * 0.5 mm. The uncertainty analysis was done
according to the approach purposed by Kline and McClintock
[Ref. 19]). The uncertainty in the result R is a function of
the variables in the equation and their respective

uncertainties:
R=R(V,, V. ..., V)

This is determined by using the expression:

8R=1(( ‘9Rnsv>2 (( ‘9"")zsv)2 aR

2]2

The uncertainties in these parameters for the present
experiments were defined as 3 Pwr, 8 L, and 3A T. Recalling

that the equation for Nusselt number is:
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N= convLc
kA ( 'y plate™ Taub)

The uncertainty of the Nusselt number was computed as follows:

_1 L 2 Pwr 2
3Nu= K[(A(AT) 8 Pwr) +(A(AT) L)
PwrL PwrL 1
—_ S A2+ (——C 3AT2] 2
“Tan M Fan A0

The above equations produced a maximum uncertainty for Nu of
+ 0.22 for a nominal value of Nu=5.41. This corresponds to
approximafely 4.0% uncertainty. .

The above procedure was used to determine the
uncertainties in RA. Without 1listing the equations, the
maximum uncertainty for RA was + 5.65 x 10° for a nominal
value 1.253 x 10°. This corresponds to approximately 4.5%

uncertainty.
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APPENDIX D
SAMPLE CALCULATIONS
The following calculations are based on the average
temperature of 25 thermocouple locations, measured over the
surface of the heater, for a time span of nine minutes, with
a heat flux of 2440 W/m?. The average A T was 13.57 °C.
1. CHARACTERISTIC DIMENSIONS
Perimeter (P) = 4(0.09)
| = 0.36 m
Heater surface area ( A, ) = (0.09)3
= ,0081 m3
Characteristic length (L.,)=(0.0081)/(0.36)
=0.0225 m
2. CONVECTIVE HEAT FLUX

Power to heater ( Q = 19.73 W

conv )
Heat flux ( ¢’ ) = 19.73/0.0081

= 2440 W/m?

3. WATER PROPERTIES [REF. 20]

Film temperature ( Tf;, ) = (32.66 + 19.09)/2 + 273.15

= 299.0 K
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B = 267E-6 1/K
v = 0.878E-6 m?/sec
K = 0.607 W/m K
Pr = 5.985
4. NUSSELT NUMBER
Nu = (19.73)(0.0225)/(0.607) (0.0081) (13.57)
= 6.651

S. FLUX BASED RAYLEIGH NUMBER

(9.81) (267E-6) (19.73) (0.0225)4, 445
(0.607) (0.0081) (0.878E-6)2

= 20.911E+6

Ra =

6. TEMPERATURE BASED RAYLEIGH NUMBER

(9.81) (267E-6) (13.57) (0.0225)° ¢ 44¢

Ra =
(0.878E-6)2

= 3.143E+6
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